

#### **GROUP #1**

ABQ Metro: Groundwater, Rio Grande, DIVERSION (Chama, San Juan River), Colorado River

USE: 80% AG, domestic, industrial/oil & gas production, endangered, commercial

TRENDS: less water, RG drying, quality compromised, aging infrastructure, hopelessness,

increased knowledge, and wisdom from indigenous /local communities

RIGHTS: ABQWA, Private landowners, MRGCD, communities

#### **GROUP #2**

People should know that groundwater is a finite resource!

Water is limited and precious

Neighbors need to conserve water

Understanding of fire frequency/regimes/severity

More rain gardens and get rid of grass

Policymakers should be more educated

#### **GROUP #3**

**Visioning Through Constraints** 

Adapting to 25% less water availability: irrigated acres + riparian areas

- Dig deeper int ground H20
- NM-95M acre feet of percy.
- Sectors limited H20 different crops (drought tolerant); service industry; tech
- 1. Conserve more
- 2. Collection
- 3. Developing technology

Developing untapped H20

- 1. Produced H20 DevelopingTech.
- 2. Pipeline

Innovative practices: acequias

#### **GROUP #4**

# -ground and rain water collection -grey water? **MRGCD** -aquifer -river -acequia -wastewater treatment facility Rio Chama -acequias - small streams/Rio Chama -mutual domestic -wells -rainwater collection **Upper Rio** -Community system off a well -Santa Clara Creek/Rio Grande **QUANTIFY** -well metering -aquifer mapping -surface water gauges

-snowpack – gauges

**USERS** 

Sandias

- -ag
- -municipal landscaping evaporation
- -domestic
- -MRGCD-D Riparian
- -aging infrastructure
- -declining surface/groundwater
- -population growth
- -less & loss water data collected
- -Federal priorities USDA
- -lack of planning and upkeep

#### **UNKNOWNS**

- -lack of comprehensive plan for future water infrastructure
- -long-range planning
- -future weather patterns
- -political priorities
- -food security
- -technology

#### **FOLLOW-UP**

- -I wish neighbors/politicians knew how to use water efficiently
- -Politicians understanding of the importance of education in conserving H20

#### **GROUP #5**

|         | LRG                | Placitas            | Las Vegas                   |
|---------|--------------------|---------------------|-----------------------------|
| 1. SRC: | Rio Grande Project | – springs           | Rio Gallinas                |
|         | Wells              | - Las Huertas Creek | Backup Groundwater reserves |
|         |                    | - Groundwater       |                             |

2. To quantify - Complex, not measured Groundwater reserves

- Flowthrough

3. Irrigated Ag Domestic users Acequia

Acequias Domestic

Old dams, pipelines

4. Known trends/Infrast. Aging pipes Increasing evaporation

Declining snowpack,

Impacts springs, creeks

5. Unknown Human nature

State agency actions
Legislative actions
Groundwater controls
Precipitation/temps

#### **GROUP #6**

Stop growing communities – development Less irrigation Stop water lawns

Movie industry - timber

Hospitality

Conservation

Limiting growth

Identifying alternative sources

Brackish water

**Awareness** 

Education

Water use + conservation can give a negative opinion and the county can approve the sub diversion anyway, correct?

### Sample Strategies to Consider - Not Comprehensive, Just a Start

### **Supply Augmentation & Diversification**

- Rainwater harvesting (residential, commercial, ag-based)
- Stormwater capture & treatment
- Indirect potable reuse (IPR) treating wastewater for groundwater recharge or blending
- Direct potable reuse (DPR) treating wastewater to drinking water standards
- Effluent reuse expansion for irrigation, industrial, or environmental flows
- Aquifer storage and recovery (ASR) storing excess water underground
- Greywater systems decentralized reuse of sinks, showers, and laundry water
- Brackish groundwater treatment desalinating low-quality groundwater for municipal or industrial use

#### **Demand Reduction & Conservation**

- Xeriscaping drought-tolerant, native landscaping
- Soil moisture sensors and smart irrigation systems
- High-efficiency plumbing retrofits (toilets, fixtures)
- Tiered pricing or water budgeting to incentivize conservation
- Behavior change campaigns (e.g., youth education, appliance rebates)

#### **Agricultural Water Management**

- Transition to dryland farming or rotational fallowing
- Switching to less water-intensive crops
- Subsurface drip irrigation (SDI)
- Deficit irrigation strategies (irrigating below full water needs)
- On-farm water storage ponds for stormwater or treated effluent

#### **Collaborative and Governance-Based Approaches**

- Regional water banking or leasing arrangements
- Watershed-scale management plans
- Conservation easements focused on water
- Multi-benefit land repurposing
- Tribal/state/local water sharing agreements

| Our Top 2–3 Ideas for Action: |  |  |  |  |  |
|-------------------------------|--|--|--|--|--|
| •                             |  |  |  |  |  |
| •                             |  |  |  |  |  |
| •                             |  |  |  |  |  |

## NM WATER DIALOGUE: SUMMARY OF EIGHT (8) THEMES

| THEME                                                  | CHALLENGES/INSIGHTS |
|--------------------------------------------------------|---------------------|
| Indigenous Leadership and Sacred Water Stewardship     | 4                   |
| Systems Thinking – Water, Energy, and Financial Limits | 4                   |
| Legislative Engagement + Polycentric Governance        | 4                   |
| Sustainable Funding for Adaptive Water Management      | 4                   |
| Closed Basin Protection and Groundwater Safeguards     | 5                   |
| Water Law and Beneficial Use Reform                    | 3                   |
| Equitable Water Budgeting and Rural-Urban Integration  | 2                   |
| Water Measurement and Enforcement                      | 4                   |

30 Total Challenges

#### **NEW MEXICO WATER DIALOGUE IN ACTION: 8 IDENTIFIED THEMES** Challenge/Insight Theme #1: Indigenous Leadership and Sacred Water Stewardship Indigenous knowledge and values around water are often excluded from formal decision-making. 1.1 Stories and teachings about water are not being shared widely across generations or communities. 1.2 1.3 There are no standard protocols for Indigenous consultation or consent in water planning. 1.4 Indigenous-led restoration and conservation efforts lack equitable access to funding. Challenge/Insight Theme #2: Systems Thinking | Water, Energy, and Financial Limits Water policy often fails to account for the interdependent limits of energy 2.1 and money in water development and delivery. Elected officials across all levels—not just state legislators—must be involved in decision-making that respects the limits 2.2 of natural and financial resources. Innovative water technologies (e.g., ASR, desalination, potable reuse) can be resource-intensive and may not be 2.3 sustainable without full cost and energy analysis. Many agencies operate in silos, leading to underinformed decisions that ignore trade-offs between water, energy, and 2.4

|                   | financial resources.                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Challenge/Insight | Theme #3: Legislative Engagement + Polycentric Government                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 3.1               | State-level water planning often lacks input from local governments, scientific experts, and community-driven conservation models.                                                                                                                                                                                                                                                                                                                    |  |  |
| 3.2               | Legislators are not consistently informed by hydrologists, geologists, engineers, or successful regional conservation initiatives.                                                                                                                                                                                                                                                                                                                    |  |  |
| 3.3               | There is no unified framework for defining roles (who), responsibilities (what), methods (how), and timelines (when) to adapt to 25–35% less water by 2070.                                                                                                                                                                                                                                                                                           |  |  |
| 3.4               | Current market-based retreat and policy models undervalue regionally effective strategies, such as landowner-led groundwater conservation, voluntary well retirement, regenerative dryland transition, and long-term land repurposing, which offer scalable, cost-effective solutions but are often bypassed in favor of theoretical models or one-size-fits-all strategies that don't match local hydrology, economics, or community trust dynamics. |  |  |

### **NEW MEXICO WATER DIALOGUE IN ACTION: 8 IDENTIFIED THEMES**

| Challenge/Insight | Theme #4: Sustainable Funding for Adaptive Water Management                                                                                                                             |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4.1               | Water management is ongoing and requires adaptive approaches as conditions shift—yet funding is often one-time or episodic.                                                             |  |  |  |
| 4.2               | Lack of recurring funding undermines infrastructure maintenance, data collection, enforcement, conservation, and governance capacity.                                                   |  |  |  |
| 4.3               | Communities and local governments cannot build resilient systems without reliable state or federal co-investment.                                                                       |  |  |  |
| 4.4               | Without a permanent funding stream, New Mexico risks falling behind in addressing compacts, aquifer declines, and water equity.                                                         |  |  |  |
| Challenge/Insight | Theme #5: Closed Basin Protection and Groundwater Safeguards                                                                                                                            |  |  |  |
| 5.1               | Closed basins like the Ogallala Aquifer have no surface water inflows and are highly susceptible to permanent groundwater depletion.                                                    |  |  |  |
| 5.2               | Current state policy does not distinguish between closed and open basins, applying uniform rules that overlook critical differences in recharge potential.                              |  |  |  |
| 5.3               | Over pumping in closed basins risks aquifer collapse, land subsidence, and loss of water for future generations and military or municipal needs.                                        |  |  |  |
| 5.4               | Without explicit protection, closed basins continue to be over-appropriated and managed under outdated assumptions of water availability.                                               |  |  |  |
| 5.5               | Closed basins face increasing political pressure to export water to other regions despite having no natural recharge, threatening their survival.                                       |  |  |  |
| Challenge/Insight | Theme #6: Water Law and Beneficial Use Reform                                                                                                                                           |  |  |  |
| 6.1               | Current water law incentivizes 'use it or lose it' rather than conserving water through temporary nonuse or alternative uses.                                                           |  |  |  |
| 6.2               | Farmers and ranchers risk forfeiting their water rights—even when choosing to preserve water for future generations—if continuous beneficial use is not demonstrated under current law. |  |  |  |
| 6.3               | Economic growth continues without transparent alignment to actual water availability or downstream compact commitments.                                                                 |  |  |  |

| NEW MEXICO WATER DIALOGUE IN ACTION: 8 IDENTIFIED THEMES |                                                                                                                                                                                                 |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Challenge/Insight                                        | Theme #7: Equitable Water Budgeting and Rural-Urban Integration                                                                                                                                 |  |  |  |
| 7.1                                                      | Urban water budgets (e.g., Albuquerque) often exclude or inadequately consider the surrounding rural and unincorporated communities that are functionally connected to the city's water system. |  |  |  |
| 7.2                                                      | The discrepancy between legally permitted water rights ('paper water') and physically available water ('wet water') distorts planning and enables over-allocation.                              |  |  |  |
| Challenge/Insight                                        | Theme #8: Water Measurement and Enforcement                                                                                                                                                     |  |  |  |
| 8.1                                                      | Many wells—agricultural, domestic, and livestock—are not metered, undermining enforcement of water law and masking overuse.                                                                     |  |  |  |
| 8.2                                                      | Replacement wells are often installed without decommissioning the original well, resulting in unauthorized supplemental use.                                                                    |  |  |  |
| 8.3                                                      | Irrigation wells converted to domestic use are often not reclassified, leading to continued withdrawals at higher allocation rates (3 AF instead of 1.29 AF).                                   |  |  |  |
| 8.4                                                      | Lack of real-time data and enforcement mechanisms hampers accurate planning, compliance, and equitable water use.                                                                               |  |  |  |

### NM WATER DIALOGUE IN ACTION - WATER POLICY ANALYSIS

| Analytical Theme                                        | Description / Insight                                                                                                                                                                       |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OpenET and Evapotranspiration Tracking                  | OpenET enables transparent measurement of evapotranspiration, essential for tracking irrigation use, setting conservation baselines, and validating water savings.                          |
| Water Repurposing Requires Full Valuation               | Repurposing water from agriculture or other uses must include ecological, cultural, and economic considerations—not just financial return.                                                  |
| Quantification of Water Portfolio Components            | Effective water planning requires a detailed breakdown of all sources (groundwater, surface water, reuse, etc.) and demands (municipal, ag, industrial).                                    |
| Alignment of Societal Values Across Scales              | Stakeholders across rural, urban, tribal, and state levels must reconcile differing values (economic growth, ecological integrity, cultural traditions) to design coherent strategies.      |
| Mismanagement Leading to Resource Collapse and Conflict | Current systems of allocation and enforcement are failing; water is overused, under-regulated, and heading toward irreversible depletion in several basins.                                 |
| Rural Equity in Water Amenities and Access              | Rural communities express frustration that urban centers like Albuquerque have more water options, greater conservation funding, and recreational amenities not available in their regions. |

| Resource Limitations in Rural Communities             | Planning, infrastructure, and personnel constraints in rural areas limit ability to engage in or benefit from state-level conservation and funding programs. |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Use It or Lose It' Mentality Undermining Conservation | New Mexico's legal framework pressures users to consume water or risk losing rights, disincentivizing voluntary conservation and long-term stewardship.      |  |

## NM WATER DIALOGUE IN ACTION: IDENTIFIED WATER SUPPLY SOURCES FULL REFERENCE

| Category      | Water Supply Source                                | Use Cases / Risks / Considerations                                                                | Governing Entities / Legal Constraints                                           |
|---------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Groundwater   | Shallow Alluvial Aquifers (e.g., Rio Grande Basin) | Irrigation, municipal supply near river valleys; risk of contamination from surface interaction.  | OSE, ISC; subject to surface-groundwater interaction management.                 |
| Groundwater   | Confined and Unconfined Aquifers                   | Major source for domestic, ag, and municipal use; susceptible to over-pumping and drawdown.       | OSE; governed under state water code, water rights adjudicated by use.           |
| Groundwater   | High Plains (Ogallala) Aquifer                     | Primary ag and rural supply in Eastern NM; non-renewable, critically overdrafted.                 | OSE; groundwater mining recognized, REPI & NRCS involved in conservation.        |
| Groundwater   | Paleochannels and Fossil<br>Aquifers               | Important for long-term conservation; fossil water, extremely limited recharge.                   | OSE, OLWC, ISC; highly regulated under conservation easement and lease programs. |
| Groundwater   | Fractured Rock Aquifers                            | Low yield but critical in mountainous terrain; hard to map, often shallow.                        | OSE, ISC; often unregulated due to fractured flow paths, hard to meter.          |
| Groundwater   | Springs and Seep-fed Discharge Zones               | Localized water source for ecosystems and rural use; vulnerable to drying due to aquifer decline. | OSE, USFS, tribal authorities; springs often on federal or tribal land.          |
| Groundwater   | Artesian Aquifers                                  | Stable pressures for irrigation/domestic; overuse risks land subsidence or depletion.             | OSE; monitored under artesian basin regulations, high depletion concern.         |
| Groundwater   | Brackish Groundwater<br>Aquifers                   | Potential supply for treatment; expensive desalination, high energy cost.                         | OSE, NM Environment Dept; requires desal permits, high TDS regulation.           |
| Groundwater   | Geothermal Groundwater                             | Potential geothermal energy use; limited availability and quality.                                | OSE, EMNRD; geothermal classified under separate statutes, limited use.          |
| Surface Water | Rio Grande River                                   | Primary surface water source in NM; over-<br>allocated and heavily managed under<br>compacts.     | OSE, ISC, Bureau of Reclamation; compact obligations and irrigation districts.   |

| Surface Water       | Pecos River                                                                                                 | Agricultural, municipal supply; impacted by drought and overuse.                         | OSE, ISC, compact-driven with Texas; Pecos<br>River Master oversees flows.        |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Surface Water       | Canadian River                                                                                              | Supports northeastern NM; impacted by upstream diversions and evaporation.               | OSE; Canadian River Compact, limited infrastructure in NM.                        |
| Surface Water       | San Juan River                                                                                              | Major compact-managed river; supports tribal, ag, and urban use.                         | Compact-driven; Bureau of Reclamation, tribal water settlements.                  |
| Surface Water       | Gila River                                                                                                  | Supports Gila Basin ecology/ag; prone to conflict over diversion proposals.              | OSE; Gila River Indian Water Rights Settlement Act; major planning conflicts.     |
| Surface Water       | Animas River                                                                                                | Tributary of San Juan; small-scale use, snowmelt dependent.                              | OSE; local watershed groups and tribal rights apply.                              |
| Surface Water       | Santa Fe River                                                                                              | Seasonal flow; used for recharge, cultural connection, and flood flows.                  | City, county flood districts; managed under local conservation codes.             |
| Surface Water       | Mimbres River                                                                                               | Seasonal/ephemeral; flash flood prone; local ag and stormwater recharge.                 | OSE; surface water rights managed under prior appropriation.                      |
| Surface Water       | Rio Hondo / Rio Puerco                                                                                      | Limited seasonal flow; rural and wildlife use; sometimes unreliable.                     | County water boards; minimal regulation but local importance.                     |
| Surface Water       | Reservoirs (e.g., Elephant<br>Butte, Heron, El Vado,<br>Abiquiu, Ute, Sumner,<br>Caballo, Cochiti, Conchas) | Surface storage; supports water supply, recreation, irrigation; impacted by evaporation. | Bureau of Reclamation, ISC, local irrigation districts.                           |
| Surface Water       | Natural Lakes and Playas                                                                                    | Short-term water storage; minimal recharge; habitat support.                             | OSE; limited use, monitored by local entities for wildlife impacts.               |
| Surface Water       | Ephemeral / Intermittent<br>Streams                                                                         | Seasonal flows critical for recharge and wildlife corridors; sensitive to erosion.       | County, ISC; streamflow intermittency complicates administration.                 |
| Surface Water       | Rainwater Harvesting                                                                                        | Residential, irrigation, non-potable indoor use; volume limited to catchment size.       | OSE, local government; regulated rainwater harvesting standards in some counties. |
| Surface Water       | Stormwater Runoff Capture                                                                                   | Urban capture for landscape irrigation, recharge; contaminated if unmanaged.             | OSE, EPA (MS4 permit); stormwater often unmanaged in rural areas.                 |
| Precipitation-Based | Snowmelt                                                                                                    | Supports snow-fed rivers and aquifers; declining with climate change.                    | OSE, ISC, NRCS; snowpack data vital for annual forecasts.                         |
| Precipitation-Based | Treated Municipal<br>Wastewater                                                                             | Irrigation, landscaping, industrial; public perception and salinity challenges.          | OSE, NM Environment Dept, city utilities; reuse laws evolving.                    |

| recipitation-Based       | Greywater Systems                                          | Non-potable reuse; toilets, landscaping,                                       | OSE; allowed under NM greywater reuse rule                             |
|--------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Trecipitation based      |                                                            | requires local systems.                                                        | (14.8.2 NMAC).                                                         |
| Reuse / Reclamation      | Constructed Wetlands                                       | Water quality buffer; habitat benefit; limited                                 | OSE, NM Env. Dept.; typically part of pilot or                         |
| neuse / necialilation    |                                                            | direct reuse volume.                                                           | nature-based systems.                                                  |
| Douge / Declamation      | Aquifer Storage and Recovery                               | Storage and backup supply; complex                                             | OSE; regulated under ASR guidelines, few                               |
| Reuse / Reclamation      | (ASR)                                                      | regulation and cost.                                                           | approved projects.                                                     |
| Pausa / Paslamation      | Direct Potable Reuse (DPR)                                 | Emerging use in drought-stressed cities;                                       | OSE, NM Environment Dept.; requires special                            |
| Reuse / Reclamation      |                                                            | requires advanced treatment.                                                   | permits and monitoring.                                                |
| Reuse / Reclamation      | Indirect Potable Reuse (IPR)                               | Used for groundwater recharge and blending; regulatory approvals required.     | OSE; indirect reuse overseen by environment department, complex rules. |
| ouse / Declaration       | Produced Water from Oil &                                  | Oilfield byproduct; only viable with major                                     | OSE, EMNRD; treated as industrial byproduct,                           |
| Reuse / Reclamation      | Gas                                                        | treatment and regulation.                                                      | disposal rules strict.                                                 |
| Reuse / Reclamation      | Desalinated Brackish Water                                 | Potential future supply; energy intensive, cost-<br>prohibitive for many uses. | OSE, NM Tech; desal programs in pilot stages, funding limited.         |
| Industrial / Alternative | Import Pipelines / Water<br>Transfers (e.g., Ute Pipeline) | Transfers from reservoir projects; politically and ecologically controversial. | OSE, ISC, federal project oversight (e.g., Ute pipeline), ENMWUA.      |